测试数据
Greenplum
Flink
Doris
Agile Query
车联网大数据
用户画像
Hadoop
Streampark
测试邀请社区成员-小号
智能制造大数据
物理围栏/电子围栏
Linux
Hive
Dolphinscheduler
Kafka
新零售大数据
Git
游戏大数据
Linkis
数据仓库/中台
Zookeeper
Spark
Clickhouse
Kettle
Docker
Elasticsearch
web前端
基于Flink+Drools可自定义规则的实时告警系统
Java
Paimon
Superset
Flume
Datart
Hbase
MySQL
StarRocks
FineReport
Azkaban
数据湖
Calcite
我的测试技术
Airflow
测试邀请社区成员
数智化
数据治理
StreamSets
Dinky
物流大数据
xasdasd
Oozie
Drools
Ambari
个人社区测试a
金融大数据
测试快速链接
指标中台
Datax
测试邀请成员
Dbeaver
SeaTunnel
Canal
Hudi
Kubernetes
测试新建
测试1
Zeppelin
Hue
测试修改接口
Beam
Impala
Prometheus
Amoro
Grafana
InfluxDB
Kylin
Storm
1111111111111111
Zabbix
Svn
Tidb
Oracle
test
测试快速链接12
测试编码2
Pulsar
testttest
Davinci
Iceberg
Sentry
MongoDB
Nmon
Phoenix
Telegraf
Cassandra
Maxwell
Nifi
22233
Kudu
Sqoop
Tez
Filebeat
Debezium
test私密
dddddddddddddd
测试邀请
测试私密社区
测试社区1
test
测试私密社区
test
测试邀请成员测试邀请成员
无匹配社区
博客园
最新
热门
请选择社区
发布
美团外卖推荐情境化智能流量分发的实践与探索
美团外卖推荐团队在推荐算法的长期落地实践中,针对外卖业务情境化特点对排序模型进行深入探索与优化。本文介绍了面向情境化建模的“情境细分+统一模型”建模思路,通过用户行为序列建模以及专家网络两个模块的优化,实现不同场景间对信息独有性的刻画和信息共性的相互传递,进而提升全部流量效率。
忆往昔
发布于 2024年01月03日
大规模异构图召回在美团到店推荐广告的应用
美团到店推荐广告团队在图神经网络的长期落地实践中,思考分析了场景的特点与挑战,针对性地进行了模型设计,并通过大规模训练工具及线上部署优化多次成功落地,带来了线上收入提升。本文主要介绍了大规模图召回技术在美团到店广告场景下的实践经验,包括模型设计思路、模型迭代历程、大规模训练工具以及线上部署性能优化等,希望为从事相关工作的读者带来一些启发。
忆往昔
发布于 2024年01月03日
1浏览
清华大学课题组联合美团研发无人机声波定位技术获顶会大奖
11月6日至9日,第20届国际计算机学会ACM嵌入式网络感知系统大会SenSys在美国波士顿召开。清华大学软件学院何源副教授课题组和美团无人机团队合作论文“麦巢:辅助无人机精准降落的远距离即时声源定位技术”获得了大会最佳论文奖第二名(Best Paper Runner-Up)。
忆往昔
发布于 2024年01月03日
美团SemEval2022结构化情感分析跨语言赛道冠军方法总结
美团语音交互部针对跨语言结构化情感分析任务中缺少小语种的标注数据、传统方法优化成本高昂的问题,通过利用跨语言预训练语言模型、多任务和数据增强方法在不同语言间实现低成本的迁移,相关方法获得了SemEval 2022结构化情感分析跨语言赛道的冠军。
忆往昔
发布于 2024年01月03日
1浏览
ACM MM & ECCV 2022 | 美团视觉8篇论文揭秘内容领域的智能科技
前不久,美团视觉智能部的8篇论文被多媒体和计算机视觉领域顶会 ACM MM 与 ECCV 收录,本文将快速带你了解这8篇论文的研究成果及其可在内容领域的落地应用。
忆往昔
发布于 2024年01月03日
美团图灵机器学习平台性能起飞的秘密(一)
美团图灵机器学习平台在长期的优化实践中,积累了一系列独特的优化方法。本文主要介绍了图灵机器学习平台在内存优化方面沉淀的优化技术,我们深入到源码层面,介绍了Spark算子的原理并提供了最佳实践。希望为读者带来一些思路上的启发。
忆往昔
发布于 2024年01月03日
检索式对话系统在美团客服场景的探索与实践
在传统的客服、IM等场景中,坐席需要花费大量时间回答用户的各种咨询,通常面临答案查询时间长、问题重复、时效要求高等挑战。因而,使用技术手段辅助坐席快速、准确、高效地回答用户的各类问题非常有必要。我们设计并迭代了一套基于检索式对话系统的框架,以推荐回复的方式,基于对话上文为坐席提供候选回复,提高坐席效率进而提升用户体验,在美团众多业务上均取得了显著的效果。
忆往昔
发布于 2024年01月03日
美团高性能终端实时日志系统建设实践
你是否经常遇到线上需要日志排查问题但迟迟联系不上用户上报日志的情况?或者是否经常陷入由于存储空间不足而导致日志写不进去的囧境?本文介绍了美团是如何从0到1搭建高性能终端实时日志系统,从此彻底解决日志丢失和写满问题的。希望能为大家带来一些帮助和启发。
忆往昔
发布于 2024年01月03日
深入理解函数式编程(上)
函数式编程是一种历史悠久的编程范式。作为演算法,它的历史可以追溯到现代计算机诞生之前的λ演算,本文希望带大家快速了解函数式编程的历史、基础技术、重要特性和实践法则。在内容层面,主要使用JavaScript语言来描述函数式编程的特性,并以演算规则、语言特性、范式特性、副作用处理等方面作为切入点,通过大量演示示例来讲解这种编程范式。同时,文末列举比较一些此范式的优缺点,供读者参考。因为文章涵盖一些范畴论知识,可能需要其他参考资料一起辅助阅读。
忆往昔
发布于 2024年01月03日
1浏览
深入理解函数式编程(下)
函数式编程是一种历史悠久的编程范式。作为演算法,它的历史可以追溯到现代计算机诞生之前的λ演算,本文希望带大家快速了解函数式编程的历史、基础技术、重要特性和实践法则。在内容层面,主要使用JavaScript语言来描述函数式编程的特性,并以演算规则、语言特性、范式特性、副作用处理等方面作为切入点,通过大量演示示例来讲解这种编程范式。同时,文末列举比较一些此范式的优缺点,供读者参考。因为文章涵盖一些范畴论知识,可能需要其他参考资料一起辅助阅读。
忆往昔
发布于 2024年01月03日
数字化新业态下数据安全创新——Token化
数据安全最大的挑战是高速扩张前提下,解决数据暴露性问题。Token化让安全成为数据默认属性,让安全性随数据自动扩展,从根本上解决效率和安全合规的矛盾,实现设计安全和默认安全。本文主要介绍了Token化方案、Token化安全性实现以及美团所做的一些工程实践和经验分享。
忆往昔
发布于 2024年01月03日
通用目标检测开源框架YOLOv6在美团的量化部署实战
基于美团目标检测模型开源框架 YOLOv6,本文提供了一种通用的量化部署方案,在保持精度的同时大幅提升了检测的速度,为通用检测的工业化部署探索出一条可行之路,希望能给大家带来一些启发或者帮助。
忆往昔
发布于 2024年01月03日
目标检测开源框架YOLOv6全面升级,更快更准的2.0版本来啦
近日,美团视觉智能部发布了YOLOv6 2.0版本,本次更新对轻量级网络进行了全面升级,量化版模型 YOLOv6-S 达到了 869 FPS,同时,还推出了综合性能优异的中大型网络(YOLOv6-M/L),丰富了 YOLOv6 网络系列。
忆往昔
发布于 2024年01月03日
美团隐私计算平台通过行业权威认证
近日,在2022年隐私计算大会上,中国信通院公布第六批可信隐私计算评测结果,美团隐私计算平台通过“联邦学习安全”和“多方安全计算基础能力”两个专项评测认证。2021年,美团已经通过“联邦学习基础能力”专项评测认证。
忆往昔
发布于 2024年01月03日
自动化测试在美团外卖的实践与落地
随着美团到家业务的发展,系统复杂度也在持续增长。测试用例数量近两年增长约一倍,单端数量超过1万2千条,而研发人员的工作从大部分时间在开发,转变成一半时间在开发、一半时间在模拟环境和自测。因此,引入自动化测试就显得十分有必要,本文介绍了美团外卖在自动化测试方向做的一些探索和实践,希望对从事相关领域工作的同学能够带来一些启发或帮助。
忆往昔
发布于 2024年01月03日
图技术在美团外卖下的场景化应用及探索
在外卖广告CTR预估建模中,我们依托图技术在场景化上进行了一系列探索。本文首先介绍了使用图网络技术的出发点,然后从特征层面的抽象图关系到子图扩展以及场景感知子图,逐步介绍如何使用图技术建模业务问题,并针对联合训练的线上服务细节及效果进行解释和分析,希望能给从事相关工作的同学带来一些帮助或启发。
忆往昔
发布于 2024年01月03日
基于AI算法的数据库异常监测系统的设计与实现
美团数据库平台研发组,面临日益急迫的数据库异常发现需求,为了更加快速、智能地发现、定位和止损,我们开发了基于AI算法的数据库异常检测服务。本文从特征分析、算法选型、模型训练与实时检测等维度介绍了我们的一些实践和思考,希望为从事相关工作的同学带来一些启发或者帮助。
忆往昔
发布于 2024年01月03日
Replication(上):常见复制模型&分布式系统挑战
分布式系统设计是一项十分复杂且具有挑战性的事情。其中,数据复制与一致性更是其中十分重要的一环。数据复制领域概念庞杂、理论性强,如果对应的算法没有理论验证大概率会出错。如果在设计过程中,不了解对应理论所解决的问题以及不同理论之间的联系,势必无法设计出一个合理的分布式系统。
忆往昔
发布于 2024年01月03日
Replication(下):事务,一致性与共识
本文主要介绍事务、一致性以及共识,首先会介绍它们怎么在分布式系统中起作用,然后将尝试描述它们之间的内在联系,让大家了解,在设计分布式系统时也是有一定的“套路”可寻。最后将介绍业界验证分布式算法的一些工具和框架。希望能够对大家有所帮助或者启发。
忆往昔
发布于 2024年01月03日
KDD 2022 | 美团技术团队精选论文解读
今年,美团技术团队有多篇论文被KDD 2022收录,这些论文涵盖了图谱预训练、选择算法、意图自动发现、效果建模、策略学习、概率预测、奖励框架等多个技术领域。本文精选了7篇论文做简要介绍(附下载链接),希望能对从事相关研究方向的同学有所帮助或启发。
忆往昔
发布于 2024年01月03日
1
14
15
16
17
18
44